Skip to main content Site map

Ordinary Differential Equations 1st ed 1992. 2nd printing 2006


Ordinary Differential Equations 1st ed 1992. 2nd printing 2006

Paperback by Arnold, Vladimir I.; Cooke, R.

Ordinary Differential Equations

WAS £64.99   SAVE £9.75

£55.24

ISBN:
9783540345633
Publication Date:
19 Jun 2006
Edition/language:
1st ed 1992. 2nd printing 2006 / English
Publisher:
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Pages:
338 pages
Format:
Paperback
For delivery:
Estimated despatch 15 - 16 May 2024
Ordinary Differential Equations

Description

The first two chapters of this book have been thoroughly revised and sig- nificantly expanded. Sections have been added on elementary methods of in- tegration (on homogeneous and inhomogeneous first-order linear equations and on homogeneous and quasi-homogeneous equations), on first-order linear and quasi-linear partial differential equations, on equations not solved for the derivative, and on Sturm's theorems on the zeros of second-order linear equa- tions. Thus the new edition contains all the questions of the current syllabus in the theory of ordinary differential equations. In discussing special devices for integration the author has tried through- out to lay bare the geometric essence of the methods being studied and to show how these methods work in applications, especially in mechanics. Thus to solve an inhomogeneous linear equation we introduce the delta-function and calculate the retarded Green's function; quasi-homogeneous equations lead to the theory of similarity and the law of universal gravitation, while the theorem on differentiability of the solution with respect to the initial conditions leads to the study of the relative motion of celestial bodies in neighboring orbits. The author has permitted himself to include some historical digressions in this preface. Differential equations were invented by Newton (1642-1727).

Contents

Basic Concepts.- Basic Theorems.- Linear Systems.- Proofs of the Main Theorems.- Differential Equations on Manifolds.

Back

Middlesex University logo